Top.Mail.Ru
Технологии

Энергия для полета в космос: идеи ученых со времен Юрия Гагарина до наших дней

Слушать аудиоверсию 10:34
Николай Козин

Автор

Николай Козин

Опубликовано

12 апреля 2024

Опубликовано

12 апреля 2024

Пока фантасты хвастают новыми концепциями космических двигателей, инженеры-ракетостроители полируют до блеска технологии, созданные во времена Юрия Гагарина. Какое ракетное топливо до сих пор считается лучшим, какова роль энергетики в освоении космоса, на чем человечество полетит к далеким планетам и почему реальность увлекательнее любой фантастики — корреспондент «Энергии+» выяснил в самый подходящий для этого день — День космонавтики.

Полеты во сне и наяву

В «Стране багровых туч» Стругацких топливом для космических кораблей служит мощный поток света, бьющий в исполинских размеров отражатель. В «Аэлите» Толстого — несуществующее в реальности взрывчатое вещество, способное разгонять ракеты до субсветовых скоростей. В «Задаче трех тел» Лю Цысиня двигатель был способен сжимать и расширять пространство перед и за звездолетом, преодолевая одним махом миллионы километров. Писатели-фантасты, а вслед за ними сценаристы и режиссеры предложили немало сказочных идей для космических путешествий, но известные нам законы физики пока не позволяют оторваться от Земли на чем-то другом, кроме как на химических двигателях.

Принцип действия химических двигателей един: топливо сгорает в камере и раскаленной реактивной струей вырывается из сопла, разгоняя космический аппарат до первой и второй космических скоростей. Если вы когда-нибудь запускали фейерверки, то понимаете, как это выглядит: ракета-носитель, по сути, и есть потомок фейерверков, которые человечество изобрело еще в XIII веке.

Российская ракета-носитель тяжелого класса семейства «Ангара»
Российская ракета-носитель тяжелого класса семейства «Ангара». Фото «Роскосмос»

— В 1903 году отец-основатель мировой космонавтики Константин Циолковский предложил использовать в качестве ракетного топлива кислород и водород, — рассказывает доцент базовой кафедры физики космоса Института космических исследований РАН, доктор физико-математических наук Натан Эйсмонт. — По сей день эта пара остается наилучшим решением с точки зрения физико-химических и экологических параметров. Водород используется в качестве основного горючего вещества, кислород же выступает как окислитель, который позволяет добиться более высокой температуры горения и за счет этого — высокой скорости реактивной струи и большой тяги.

«Наилучший» не значит «единственный». Водород — сложный химический элемент. Из-за низкой плотности ему нужны топливные баки большего размера, в жидком виде он быстро испаряется и образует с воздухом взрывоопасную смесь, которую надо так же быстро отводить. За сто с лишним лет с начала теоретических изысканий Циолковского была изобретена масса вариантов ракетного топлива. В качестве его основных компонентов могут выступать газ, керосин, жидкий метан, азот и многое другое. Есть даже «карамельное топливо», в составе которого используются калийная селитра и обыкновенный сахар. Его предпочитают в основном ракетостроители-любители. Ракето-носители, которые ровно 63 года назад доставили Юрия Гагарина и его космический корабль «Восток-1» в космос, были оснащены химическими двигателями, работающими на смеси кислорода и керосина.

Для того чтобы достичь максимального импульса, топливо в камеру сгорания химического двигателя нагнетается под очень высоким давлением — до 300 атмосфер. Оно настолько сжато, что на каждый квадратный сантиметр камеры давит с силой свыше 300 килограммов. Сжать его еще сильнее невозможно.

Натан Эйсмонт, доцент базовой кафедры физики космоса Института космических исследований РАН, доктор физико-математических наук

Натан Эйсмонт

Доцент базовой кафедры физики космоса Института космических исследований РАН, доктор физико-математических наук

Топливо ракеты тратится не только на ее запуск, но и на сверхмощные турбины, управляющие насосами, которые нагнетают кислород и водород в камеру сгорания. Вся система сбалансирована: чуть увеличишь расход на турбины, чтобы добиться более высокого давления в камере, и ракете не хватит энергии для отрыва от Земли. Подашь сверх положенного на сопла — ослабнут турбины и не получится создать нужное давление.

— Сегодня есть, пожалуй, единственный способ немного усовершенствовать химические двигатели — использовать вместо кислорода в топливной смеси фтор, — объясняет ученый. — Такие эксперименты проводились в середине прошлого века в СССР. Выяснилось, что фтор обладает колоссальной окислительной способностью. Горение во фторе дает больше тепла и обеспечивает больший удельный импульс, нежели горение в кислороде. Однако фтор в чистом виде и его соединения невероятно ядовиты, поэтому экспериментами все в конечном счете и ограничилось.

На малой тяге

В 1960-х начались эксперименты с электрореактивными двигателями (ЭРД). За полвека появились идеи импульсных, термических, плазменных, ионных, магнитодинамических и других модификаций.

Визуализация космического аппарата с ионным электрическим ракетным двигателем (ЭРД)
Визуализация космического аппарата с ионным электрическим ракетным двигателем (ЭРД)

В химическом двигателе тяга создается за счет выбрасывания наружу сгорающего топлива, а в электрореактивном ракета взлетает благодаря ионизированному газу, который разгоняет электрическое поле. Оно отрывает от атомов газа (как правило, ксенона) положительно заряженные частицы — электроны. От этого атомы превращаются в ионы, и поле выталкивает их из сопла. Дальше в дело вступает третий закон Ньютона: с какой силой частицы выталкиваются наружу, с такой же они отталкивают ракету. Образуется тяга, и аппарат выводится на заданную траекторию.

— Электрореактивные двигатели по мощности слабее, чем химические, — продолжает Натан Эйсмонт. — Зато если в химических топливо сгорает за несколько минут, то электрореактивные могут непрерывно работать неделями и месяцами.

Пока ракеты-носители на ЭРД не летают, но разработки в этом направлении активно ведутся. Высказывались предположения, что совсем скоро удастся перевести на ЭРД как минимум одну или несколько ступеней, чтобы стартовала ракета на жидкостном двигателе, а затем газ ксенон подталкивал ее выше и выше вплоть до орбиты.

Главный вопрос: откуда взять электрическое поле, заряжающее и ускоряющее частицы? Можно использовать солнечные батареи, однако их КПД невысок, да к тому же для того, чтобы нормально питать двигатели энергией, они должны достигать очень больших размеров. Инженеры предлагают решить эту проблему, пристроив к ЭРД атомный реактор.

— Вот уж там проблем не будет ни с мощностью, ни со стабильностью генерации, — говорит Натан Эйсмонт. — Можно и на пилотируемую космонавтику замахнуться. Звездолет с ядерным приводом — звучит! Но не все так просто.

В полет отправляется «Зевс»

— На пути создания электрореактивного двигателя с ядерным приводом встает вопрос безопасности, — продолжает Эйсмонт. — У космонавта и так работа непростая, а мы ему еще практически полноценную АЭС даем под бок. К тому же эта АЭС генерирует огромное количество тепла, которое нужно куда-то отводить. На Земле избыточное тепло без особых проблем рассеивается в атмосфере, но в безвоздушном пространстве так сделать не получится.

Космический ядерный буксир «Зевс»
Космический ядерный буксир «Зевс». Иллюстрация КБ «Арсенал»

Несмотря на многие годы исследований и экспериментов, основной сферой использования ЭРД остается беспилотная космонавтика. Там они применяются чрезвычайно широко: от спутников связи до исследовательских зондов, выполняющих сверхдальние космические миссии. Один такой прямо сейчас, пока мы с вами разговариваем, летит к Психее — массивному астероиду, почти целиком состоящему из металла, который удален от Земли на расстояние свыше 450 миллионов километров.

Существуют проекты чисто ядерных двигателей. В них рабочее тело — как правило, предлагается водород — проходит через активную зону реактора, разогревается и выбрасываться наружу. В России разрабатывается первый в мире ядерный буксир «Зевс», который сможет доставлять грузы на Луну и Марс, летать с исследовательскими миссиями к Венере и другим дальним космическим телам, а также собирать на орбите Земли вышедшие из строя спутники и защищать планету от опасных астероидов. Первый полет «Зевса» пока что назначен на 2030 год — он отправится искать жизнь на спутниках Юпитера.

Энергетика и космос

Нефть, газ, водород, уран — топливо не единственный вклад энергетической отрасли в развитие космоса.

Для того чтобы обеспечить экипаж звездолета термокостюмами, необходимыми для выхода в открытый космос, нужны нейлоновый спандекс и полихлорвиниловые трубки, по которым циркулирует теплоноситель. Силовая оболочка, поддерживающая форму мягких частей, а также перчатки и ботинки, состоят из нейлона, неопрена и огнестойкой резины, а защитное стекло на шлеме — из прозрачного поликарбоната. Все это — продукты переработки нефти и газа.

Центр управления добычей Омского нефтеперерабатывающего завода «Газпром нефти»
Центр управления добычей Омского нефтеперерабатывающего завода «Газпром нефти»

Если вы еще не знаете, чем профессия нефтяника похожа на профессию космонавта, то самое время перейти по ссылке.

Ох уж эти сказки

В разное время ученые придумывали много невероятных концептов ракетных двигателей. Вот лишь некоторые из них:

  • Взрыволет. Для полета в космос предполагалось использовать энергию ядерных взрывов: сбрасывать с космического корабля небольшие ядерные заряды, ударная волна от которых толкала бы корабль вверх.
  • Фотонный звездолет. Здесь тягу планировали развивать за счет фотонов света, имеющих заряд и импульс. Разрабатывался такой двигатель в 1970-е годы. По задумке ученых, фотонный звездолет должны были собрать на орбите Юпитера, а потом отправить в межзвездное пространство для сбора научных данных.
  • Космический аппарат на сингулярном реакторе. Источником энергии в этом варианте должна была послужить микроскопическая черная дыра, постоянно выбрасывающая заряженные частицы.
  • «Спутник Дайсона — Харропа». Предполагается, что этот космический аппарат будет генерировать энергию из солнечного ветра при помощи заряженного проволочного кольца, захватывающего электроны и преобразующего их в электрический ток.

29
Haha
Haha
28
36
Love
Love
35
33
44
Читайте также
Сотрудница Московского завода смазочных материалов
  • Картинка

Московские ученые вдвое продлили срок службы масла для автоматических коробок передач

7 мин. чтения
Пластиковая бутылка
  • Картинка

На Кавказе пластиковые отходы превратили в безопасное и эффективное топливо

7 мин. чтения
Лаборант Новопортовского месторождения
  • Картинка

В Перми создали доступный материал для эффективных водородных топливных элементов

7 мин. чтения
Специалист заливает в автомобиль моторное масло G-Energy
  • Картинка

Новые отечественные присадки втрое продлили срок службы моторного масла

7 мин. чтения
Гранулы полиэтилена
  • Картинка

В Казани построят самую большую фабрику катализаторов в России

7 мин. чтения
На конгрессе по нефтепереработке и нефтехимии Синтезис
  • Картинка

300 экспертов обсудят будущее цифровизации в нефтепереработке на конгрессе в Нижнем Новгороде

7 мин. чтения
Специалист научно-исследовательского центра битумных материалов
  • Картинка

Резиновый «каркас» повысил прочность дороги до четырех раз

7 мин. чтения
Кнопочный телефон помогает смартфону добраться до финиша в двадцатичетырехчасовом марафоне. Иллюстрация «Энергии+»
  • Картинка

Почему батареи в новых смартфонах разряжаются быстрее, чем в старых

7 мин. чтения
Парящий поезд
  • Картинка

В Челябинске испытали макет парящего «ледяного» поезда

7 мин. чтения
Специалист заливает моторное масло G-Energy в двигатель автомобиля
  • Картинка

Литиевые, медные, тефлоновые: как продлить жизнь деталям автомобиля

7 мин. чтения
X 1