На 3D-принтерах можно печатать сувениры и детали для стиральной машины, а на промышленных 3D-принтерах — элементы ядерных реакторов и микролаборатории и даже целые здания. О самых необычных примерах использования 3D-печати в энергетике — в нашей подборке.
В бытовой 3D-принтер можно загрузить в среднем до килограмма пластика. В ИЛИСТ‑2XL — тонны металла! Самый большой в России промышленный 3D-принтер разработали «Росатом» и Санкт-Петербургский государственный морской технический университет. Главное предназначение гиганта — печатать геометрически сложные детали реакторных установок, а в перспективе и реакторный корпус.
Металлический порошок загружают в рабочее пространство и плавят лазером. Два печатающих робота, передвигаясь по шести осям, тонкой струей подают расплав в камеру, заполненную аргоном, и слой за слоем создают из него нужное изделие. Так, за две недели можно «вырастить» фланец для электрохимического генератора — круглую соединительную деталь, которая обычно изготавливается 7–8 месяцев. Или напечатать выгородку активной зоны ядерного реактора с теплоотводными каналами — идеально ровными и расположенными на нужном расстоянии друг от друга.
В исследовательском центре «Геосфера» по изучению флюидов и керна подбирают технологии, которые упрощают разработку новых залежей и позволяют увеличить добычу нефти на действующих месторождениях. Чтобы сберечь образцы горных пород, добытых из скважин, специалисты научились применять для лабораторных экспериментов их клоны.
Каждый образец просвечивают на томографе, сканируют его внутреннюю структуру и воспроизводят ее рисунок вместе со всеми порами и трещинами. С помощью 3D-принтера из специальных материалов слой за слоем печатают структуру горной породы. В результате получают плоский прозрачный аналог реального керна, полностью повторяющий внутреннюю структуру породы, — микрофлюидный чип размером 1 на 2 сантиметра. На нем проводят опыты: заполняют поры нефтью и смотрят, как она поведет себя под влиянием разных жидкостей, чтобы подобрать наиболее эффективный способ вытеснения в скважину. Один чип умещается на подушечке пальца, а вся лаборатория — на письменном столе.
Как насчет того, чтобы создать на принтере здание? В 2023 году в Заполярье для нефтяников «Газпром нефти» напечатали дом отдыха. Его создали из пенобетона — этот материал хорошо сохраняет тепло даже в условиях Крайнего Севера. Здание получилось футуристичным, однако отлично вписалось в природное окружение.
На 3D-принтере напечатали деталь для первой российской газовой супертурбины ГТД-110М. Это завихритель — он перемешивает в камере сгорания топливо и воздух. Обычными методами завихритель для новой турбины создать невозможно: у него слишком сложная внутренняя геометрия, включающая множество полостей и каналов разных размеров и форм. Поэтому изначально деталь проектировали с оглядкой на аддитивные технологии.
В 2023 году ученые Сколтеха улучшили при помощи 3D-печати керамический электролит для твердооксидного топливного элемента. Из циркония, оксидов иттрия и скандия напечатали 22 образца размером 6,5 на 6,5 на 2,8 миллиметра — чуть толще сим-карты для мобильного телефона. При этом такая «симка» состоит из 122 слоев материала! Сочетая аддитивные технологии со сверхточным 3D-моделированием, в каждом образце выстроили объемные решетки сложной формы с размером отдельных элементов до 250 микрон — вдвое тоньше человеческого волоса. Это позволило сделать электролит надежнее и эффективнее.