Top.Mail.Ru
Новости

В Томском политехе создали автоматизированную систему подбора аналогов месторождений нефти и газа

16 мая 2021

Сотрудники Центра Хериот-Ватт Томского политехнического университета представили результат проекта «Аналоги» — программный продукт для геологов, способный подбирать аналоги месторождений нефти и газа. Заказчиком проекта выступил Научно-Технический Центр «Газпром нефти». По словам разработчиков, перед геологами часто встает задача собрать информацию о новом месторождении, исходя из данных об уже известных и изученных месторождениях-аналогах. Параметров подбора при этом существует очень много, что требует автоматизации процесса. В России до сих пор собственных таких автоматизированных систем не было — их разрабатывали только за рубежом. «Зарубежные системы дороги, а кроме того, они не обладают обширными данными о месторождениях России», — объясняет преимущества нового программного комплекса руководитель проекта, заведующий лабораторией нефти и газа ТПУ Станислав Сливкин.

На основе полученного от заказчика техзадания, включавшего в себя в том числе и список параметров, томские политехники сформировали базу данных о более чем ста месторождениях «Газпром нефти», разработали математическую модель и создали веб-интерфейс системы. Затем прототип был испытан экспертами-геологами, после чего уже готовый продукт был передан заказчику.

Созданная в Томске система учитывает порядка 250 параметров, среди которых тип углеводородов, система осадконакопления, литологический состав коллектора, значение пористости матрицы, глубина кровли коллектора, значение общей толщины коллектора и многие другие.

«Эта программа позволяет структурировать работу геолога. Когда ему необходимо собрать информацию, она может быть разбросана по огромному количеству баз и файлов. И прежде всего нужен был инструмент, как-то интегрирующий все данные в единую базу, с которой удобно будет работать, — рассказывает Станислав Сливкин. — Далее мы разработали интерфейс, чтобы пользователю было еще удобнее использовать данные. Он отрабатывает запросы различными интеллектуальными способами: ручная фильтрация, поиск с применением функции схожести и поиск с помощью алгоритма машинного обучения, а затем выдает результат».

0
Haha
Haha
0
0
Love
Love
0
0
0
Читать также

Сейсморазведка без бурения: «Газпром нефть» испытала комплекс для экологичного изучения недр

2 мин. чтения
Беспроводная зарядка смартфона

Как мы научились передавать энергию без проводов и что из этого получилось

7 мин. чтения

Эволюция скорости: как инженеры и их технологии меняют автоспорт

4 мин. чтения
термоядерный реактор внутри

В Томске создали защитную оболочку для термоядерных реакторов, способную «залечивать» дефекты при экстремальных температурах

2 мин. чтения
Заснеженные поля в зоне вечной мерзлоты

Стеклопластик вместо стали: ученые из Петербурга создали легкие и прочные сваи для промышленного строительства на вечной мерзлоте

2 мин. чтения
Ученые в лаборатории

«Торнадо» из жидкого металла от российских физиков позволит ускорить отвод тепла из ядерных реакторов

1 мин. чтения

«Дыхание скважины»: как управлять непредсказуемыми процессами под землей

3 мин. чтения

Петербургские инженеры создали генератор для судов, который производит энергию из водорода и кислорода

1 мин. чтения
Металл в научной лаборатории

Цифровой двойник помог ученым из Белгорода создать жаропрочную сталь для энергетики

2 мин. чтения
EnergySpace

Актуальные вызовы и тенденции энергетической отрасли обсудят участники международного форума EnergySpace

1 мин. чтения