В России создали рекордно вместительную «упаковку» для безопасного хранения водорода
Ученые Института физики твердого тела имени Осипьяна РАН предложили хранить водород в стеклянных наносферах из диоксида кремния (SiO2) — соединения, которое встречается практически во всех горных породах Земли.

Специалисты синтезировали наносферы из кварцевого стекла — доступного экологичного материала. Для получения частиц использовали шарообразный синтетический шаблон из органического стекла. На нем с помощью химической реакции между очень слабым раствором аммиака и содержащим кремний органическим соединением — винилтриметоксисиланом, — а также с помощью нагрева до нескольких сотен градусов сформировали оболочки из диоксида кремния. Получились сферы с толщиной стенки 25 нанометров и диаметром 289 нанометров —
примерно такого же размера многие вирусы.
Транспортировка и хранение водорода требуют повышенных мер безопасности. При этом газ занимает много места, и максимально компактной «упаковки» для его хранения пока нет. Идеальный материал для него должен состоять из доступных соединений, вмещать большое количество водорода, быстро поглощать и выделять его.
Полученные наносферы «накачали» водородом при давлении в 75 тысяч раз выше атмосферного и температуре 140 градусов. Соотношение «упакованного» водорода к диоксиду кремния составило 0,94 — это рекордное на сегодня содержание водорода в кварцевом стекле. Количество стекла и газа оказалось практически равным, при этом треть газа сосредоточилась в полостях сфер, а остальная часть — в оболочках.
Анализ показал, что при атмосферном давлении и температуре не выше минус 193 градусов водород пребывает в полостях в газообразном состоянии, а в оболочках — в твердом. Плотность газа при таких условиях повышается в 52 раза. Наносферы хорошо удерживают водород и в жидком азоте при температуре минус 196 градусов. После «купания» наносфер в жидком азоте содержание водорода в них при атмосферном давлении уменьшилось на 14% за три дня, а затем оставалось неизменным.
Ученые надеются, что синтезированные ими наносферы могут стать хорошим решением для хранения и транспортировки водородного топлива. Исследователи также считают, что их разработка может подойти и для изотопов водорода дейтерия и трития — основных компонентов топлива для управляемого термоядерного синтеза.