Новости

Исследователи из Санкт-Петербурга улучшили технологию передачи энергии на расстоянии

23 июля 2024

Специалисты Физико-технического института имени Иоффе Российской академии наук усовершенствуют фотопреобразователи — один из ключевых компонентов систем, благодаря которым можно передавать энергию на расстоянии при помощи лазерного луча. Сегодня такие технологии рассматриваются для широкой сферы применения: от дистанционной подзарядки спутников до передачи электрической энергии из космоса на Землю. А в будущем, говорят ученые, их можно будет применять и в быту.

Лазерный луч, направленный из радиотелескопа в звездное небо. Фото iStock

Как рассказали «Энергии+» авторы разработки, существующие преобразователи имеют естественный предел: даже если направить на них лазерный луч высокой плотности, они не смогут преобразовать его в достаточно мощный ток. В новых преобразователях эти ограничения удается обойти.

Разработанные фотопреобразователи получили на основе арсенида галлия — соединения галлия и мышьяка. В него добавили слой с изменяющимся содержанием алюминия, для того чтобы лазерное излучение преломлялось в нем, как солнечный луч преломляется в кристалле кварца. Благодаря плавному изменению концентрации алюминия излучение удалось провести по заранее выстроенному «маршруту» внутри фотопреобразователя, направив его на фоточувствительную зону. Таким образом удалось создать преобразователи, преобразующие лазерное излучение значительно большей плотности. Если существующие системы на основе кремния способны преобразовывать в электричество лазерный пучок плотностью (или интенсивностью) в 30 ватт на квадратный сантиметр, то улучшенные — до десяти киловатт на квадратный сантиметр, в 300 с лишним раз больше.

Сегодня существуют технологии, которые позволяют из подобных, но кремниевых преобразователей получать сложные сборки, способные эффективно преобразовывать лазерное излучение и добиваться напряжения в десятки вольт. Наша следующая задача — научиться производить аналогичные сборки на основе разработанной структуры фотопреобразователя. В перспективе с их помощью беспроводной энергией можно будет пользоваться даже в быту — например, заряжать электроприборы.

Владимир Хвостиков, ведущий научный сотрудник лаборатории фотоэлектрических преобразователей Физико-технического института имени Иоффе

Владимир Хвостиков

Ведущий научный сотрудник лаборатории фотоэлектрических преобразователей Физико-технического института имени Иоффе

Научный коллектив продолжает совершенствовать свою разработку.

10
Haha
Haha
4
5
Love
Love
6
6
6
Читать также

От первой арктической — к первой тропической: эволюция плавучих АЭС

5 мин. чтения
Ракета в космосе

В «Росатоме» построили электродвигатель для освоения дальнего космоса

2 мин. чтения
Сотрудник цифровой электроподстанции Новопортовского месторождения

В Перми разработали методику для экономии электроэнергии при добыче нефти

1 мин. чтения
Ученый и жрец смотрят на молнию

Кто вы — ученый или жрец? Узнайте в нашем квизе о явлениях природы!

1 мин. чтения
Разноцветные светодиоды

Российские ученые упростили производство светящихся порошков для ламп и светодиодов

1 мин. чтения
Черное солнце в образе кинозвезды на красной ковровой дорожке

Почему самые черные тела выглядят ослепительно белыми и какого цвета Солнце на самом деле

3 мин. чтения
Литиевые батареи на конвейере

В Китае литиевому аккумулятору добавили упругий каркас, чтобы продлить его срок службы

1 мин. чтения
Биотопливный элемент для питания нейроимпланта

Российские ученые придумали «сладкий» источник питания для имплантов

2 мин. чтения
Бестопливный генератор

В Москве создали бестопливный генератор, вырабатывающий электричество за счет холодной воды

1 мин. чтения
Система охлаждения аккумулятора

Китайские ученые разработали экономичную систему охлаждения аккумуляторов

1 мин. чтения