Top.Mail.Ru
Новости

В Томском политехе создали автоматизированную систему подбора аналогов месторождений нефти и газа

16 мая 2021

Сотрудники Центра Хериот-Ватт Томского политехнического университета представили результат проекта «Аналоги» — программный продукт для геологов, способный подбирать аналоги месторождений нефти и газа. Заказчиком проекта выступил Научно-Технический Центр «Газпром нефти». По словам разработчиков, перед геологами часто встает задача собрать информацию о новом месторождении, исходя из данных об уже известных и изученных месторождениях-аналогах. Параметров подбора при этом существует очень много, что требует автоматизации процесса. В России до сих пор собственных таких автоматизированных систем не было — их разрабатывали только за рубежом. «Зарубежные системы дороги, а кроме того, они не обладают обширными данными о месторождениях России», — объясняет преимущества нового программного комплекса руководитель проекта, заведующий лабораторией нефти и газа ТПУ Станислав Сливкин.

На основе полученного от заказчика техзадания, включавшего в себя в том числе и список параметров, томские политехники сформировали базу данных о более чем ста месторождениях «Газпром нефти», разработали математическую модель и создали веб-интерфейс системы. Затем прототип был испытан экспертами-геологами, после чего уже готовый продукт был передан заказчику.

Созданная в Томске система учитывает порядка 250 параметров, среди которых тип углеводородов, система осадконакопления, литологический состав коллектора, значение пористости матрицы, глубина кровли коллектора, значение общей толщины коллектора и многие другие.

«Эта программа позволяет структурировать работу геолога. Когда ему необходимо собрать информацию, она может быть разбросана по огромному количеству баз и файлов. И прежде всего нужен был инструмент, как-то интегрирующий все данные в единую базу, с которой удобно будет работать, — рассказывает Станислав Сливкин. — Далее мы разработали интерфейс, чтобы пользователю было еще удобнее использовать данные. Он отрабатывает запросы различными интеллектуальными способами: ручная фильтрация, поиск с применением функции схожести и поиск с помощью алгоритма машинного обучения, а затем выдает результат».

0
Haha
Haha
0
0
Love
Love
0
0
0
Читать также
Зола

На российской электростанции впервые наладили постоянное использование золы

2 мин. чтения
Специалисты центра управления производством в Оренбурге следят за показателями работы скважин по онлайн-схемам

Как из трех кабинетов контролировать работу 900 скважин

6 мин. чтения
Пальяновское месторождение

В Сибири научились эффективнее «выпаривать» вязкую нефть из горизонтальных скважин

1 мин. чтения
Лаборантка исследует бактерии в чашке Петри

В Петербурге придумали метеостанцию, которая сможет работать годами на энергии микробов

2 мин. чтения
Конгресс по нефтепереработке и нефтехимии Синтезис

Главные вопросы нефтепереработки и нефтехимии обсудят на конгрессе в Нижнем Новгороде

2 мин. чтения
Лазерное шоу «Энергии+» в тоннеле на велофестивале «ЗСД Фонтанка Фест»

Лазерное шоу «Энергии+»: как наука стала частью велофестиваля

1 мин. чтения
Энергоша несет из магазина пакеты с продуктами, но один из них порвался

Почему одни полиэтиленовые пакеты рвутся, а другие нет

4 мин. чтения
Грузовики на дороге в окружении полей

ОПЕК: спрос на нефть в 2025–2026 годах увеличат перевозки, промышленность и сельское хозяйство

1 мин. чтения
Грузовики на угольном карьере

На угольном карьере в Китае заработали беспилотные электрогрузовики с искусственным интеллектом

1 мин. чтения
Промышленный электродвигатель

Популярный промышленный электродвигатель сделали эффективнее, взяв магнитное поле под контроль

2 мин. чтения