Новые молекулы в форме звезд увеличат срок службы солнечных батарей
Международная команда ученых разработала новые молекулы для перовскитных солнечных элементов. Их строение по форме напоминает звезду. Физики получили три звездообразные малые молекулы: PhFF-TT (на основе трифторбензола), DPAMes-TT и TPA-TT (на основе трифениламина). Они показали эффективность, сравнимую с органическими молекулами, которые применяют в батареях обычно.

Молекулы работают в дырочно-транспортном слое солнечного элемента — того, что помогает преобразовывать свет в электричество. Когда свет попадает на перовскитоподобный материал, в нем образуются электроны (отрицательные заряды) и «дырки» (положительные). Дырочно-транспортный слой — словно конвейер, который быстро уносит «дырки» в сторону нужного электрода, чтобы батарея работала.
В исследовательскую группу вошли ученые Московского физико-технического института, Сколтеха, Федерального исследовательского центра проблем химической физики и медицинской химии РАН, Исследовательского центра новых технологий XPANCEO (ОАЭ) и Ереванского государственного университета (Армения).
Обычно дырочно-транспортный слой состоит из органических молекул (чаще РТАА), которые требуют специальных добавок для эффективной работы, при этом они сокращают срок службы батарей. Новые молекулы в добавках не нуждаются. Другое преимущество, которым их наделил звездообразный «дизайн», — эффективность передвижения заряда. Если сравнить обычные линейные молекулы со спагетти, которые могут хаотично путаться, то звездчатые — это аккуратные «клубочки» пасты.
Самыми эффективными оказались молекулы DPAMes-TT и TPA-TT. Только за счет них КПД батареи вырос с 18,1% до 19% (при этом КПД последних перовскитных элементов находится в районе 26%). Молекулы помогли сохранить 90% мощности элемента спустя 1200 часов работы (у РТАА этот показатель ниже 40%). Благодаря им батарея также стала прочнее, выдержав нагрев до 470 градусов (РТАА — только до 400). Отсутствие добавок позволило продлить срок службы элементов.
Для солнечных батарей используют три классических критерия: эффективность, стабильность и стоимость производимой энергии. Часто повышение эффективности влечет значительное увеличение стоимости. Мы сделали акцент на увеличении стабильности устройств, и нам это удалось: 1200 часов непрерывного облучения — это более 100 световых дней. Конечно, это меньше ожидаемого срока службы в 5–10 лет, но тенденция по сравнению с референсным материалом положительная. Ранее ученые с трудом достигали 100 часов при сохранении 80% стартовой эффективности, потому что материал быстро разрушался под действием света.
Сейчас ученые отрабатывают методики синтеза, чтобы собрать из «звездных» молекул большие фрагменты материала. По их словам, разработка перспективна и для солнечных батарей, и для светодиодов и фотодетекторов.