Top.Mail.Ru
Новости

Исследователи из Санкт-Петербурга улучшили технологию передачи энергии на расстоянии

23 июля 2024

Специалисты Физико-технического института имени Иоффе Российской академии наук усовершенствуют фотопреобразователи — один из ключевых компонентов систем, благодаря которым можно передавать энергию на расстоянии при помощи лазерного луча. Сегодня такие технологии рассматриваются для широкой сферы применения: от дистанционной подзарядки спутников до передачи электрической энергии из космоса на Землю. А в будущем, говорят ученые, их можно будет применять и в быту.

Лазерный луч, направленный из радиотелескопа в звездное небо. Фото iStock

Как рассказали «Энергии+» авторы разработки, существующие преобразователи имеют естественный предел: даже если направить на них лазерный луч высокой плотности, они не смогут преобразовать его в достаточно мощный ток. В новых преобразователях эти ограничения удается обойти.

Разработанные фотопреобразователи получили на основе арсенида галлия — соединения галлия и мышьяка. В него добавили слой с изменяющимся содержанием алюминия, для того чтобы лазерное излучение преломлялось в нем, как солнечный луч преломляется в кристалле кварца. Благодаря плавному изменению концентрации алюминия излучение удалось провести по заранее выстроенному «маршруту» внутри фотопреобразователя, направив его на фоточувствительную зону. Таким образом удалось создать преобразователи, преобразующие лазерное излучение значительно большей плотности. Если существующие системы на основе кремния способны преобразовывать в электричество лазерный пучок плотностью (или интенсивностью) в 30 ватт на квадратный сантиметр, то улучшенные — до десяти киловатт на квадратный сантиметр, в 300 с лишним раз больше.

Сегодня существуют технологии, которые позволяют из подобных, но кремниевых преобразователей получать сложные сборки, способные эффективно преобразовывать лазерное излучение и добиваться напряжения в десятки вольт. Наша следующая задача — научиться производить аналогичные сборки на основе разработанной структуры фотопреобразователя. В перспективе с их помощью беспроводной энергией можно будет пользоваться даже в быту — например, заряжать электроприборы.

Владимир Хвостиков, ведущий научный сотрудник лаборатории фотоэлектрических преобразователей Физико-технического института имени Иоффе

Владимир Хвостиков

Ведущий научный сотрудник лаборатории фотоэлектрических преобразователей Физико-технического института имени Иоффе

Научный коллектив продолжает совершенствовать свою разработку.

10
Haha
Haha
4
5
Love
Love
6
6
6
Читать также
Печать хранилища аддитивная

Лего для энергетики: томские ученые напечатали на 3D-принтере универсальное хранилище для водорода

2 мин. чтения
Солнечные панели свтроенные в окна

Из окна — в розетку: российская технология превратила стекло в источник солнечной энергии

2 мин. чтения
Специалисты Омского нефтеперерабатывающего завода следят за работой солнечных панелей

Союз двух энергетик: как солнце помогает извлекать энергию из углеводородов

2 мин. чтения

В Китае создали магнит, в 690 тысяч раз превосходящий силу магнитного поля Земли

2 мин. чтения
Криогель для золы Томский Политех

Криогель смог справиться с главными недостатками золы

2 мин. чтения
Женщина ученый рассматривает голограму атома

Откуда брать энергию в будущем? Ученые знают ответы: попробуйте разгадать их замыслы!

1 мин. чтения

Стало известно, какие новые электростанции построят в России в ближайшее десятилетие

1 мин. чтения
Российская энергетическая неделя

Международное сотрудничество и стратегию развития ТЭК обсудят участники «Российской энергетической недели — 2025»

1 мин. чтения

Петербургские ученые нашли способ сэкономить энергию при производстве топлива для ТЭЦ, поездов и кораблей

2 мин. чтения
Награждение победителей премии лучших технологических решений в ТЭК «Территория технологий» на форуме TNF-2025

На форуме TNF выбрали три лучших технологических решения для энергетики

2 мин. чтения