Top.Mail.Ru
Новости

Исследователи из Санкт-Петербурга улучшили технологию передачи энергии на расстоянии

23 июля 2024

Специалисты Физико-технического института имени Иоффе Российской академии наук усовершенствуют фотопреобразователи — один из ключевых компонентов систем, благодаря которым можно передавать энергию на расстоянии при помощи лазерного луча. Сегодня такие технологии рассматриваются для широкой сферы применения: от дистанционной подзарядки спутников до передачи электрической энергии из космоса на Землю. А в будущем, говорят ученые, их можно будет применять и в быту.

Лазерный луч, направленный из радиотелескопа в звездное небо. Фото iStock

Как рассказали «Энергии+» авторы разработки, существующие преобразователи имеют естественный предел: даже если направить на них лазерный луч высокой плотности, они не смогут преобразовать его в достаточно мощный ток. В новых преобразователях эти ограничения удается обойти.

Разработанные фотопреобразователи получили на основе арсенида галлия — соединения галлия и мышьяка. В него добавили слой с изменяющимся содержанием алюминия, для того чтобы лазерное излучение преломлялось в нем, как солнечный луч преломляется в кристалле кварца. Благодаря плавному изменению концентрации алюминия излучение удалось провести по заранее выстроенному «маршруту» внутри фотопреобразователя, направив его на фоточувствительную зону. Таким образом удалось создать преобразователи, преобразующие лазерное излучение значительно большей плотности. Если существующие системы на основе кремния способны преобразовывать в электричество лазерный пучок плотностью (или интенсивностью) в 30 ватт на квадратный сантиметр, то улучшенные — до десяти киловатт на квадратный сантиметр, в 300 с лишним раз больше.

Сегодня существуют технологии, которые позволяют из подобных, но кремниевых преобразователей получать сложные сборки, способные эффективно преобразовывать лазерное излучение и добиваться напряжения в десятки вольт. Наша следующая задача — научиться производить аналогичные сборки на основе разработанной структуры фотопреобразователя. В перспективе с их помощью беспроводной энергией можно будет пользоваться даже в быту — например, заряжать электроприборы.

Владимир Хвостиков, ведущий научный сотрудник лаборатории фотоэлектрических преобразователей Физико-технического института имени Иоффе

Владимир Хвостиков

Ведущий научный сотрудник лаборатории фотоэлектрических преобразователей Физико-технического института имени Иоффе

Научный коллектив продолжает совершенствовать свою разработку.

10
Haha
Haha
4
5
Love
Love
6
6
6
Читать также
Человек в темных очках под лучами лазера

От хирургии до энергетики: как управляемый свет меняет мир

4 мин. чтения
На форуме «Теплоэнергетика Центральная Азия»

Международный форум соберет в Астане 200 экспертов энергетической отрасли

1 мин. чтения
Электромобиль в поцессе зарядки

В Китае разработали систему, которая позволяет зарядить электрокар за пять минут

1 мин. чтения
Электрик за работой

Пермские ученые придумали, как точнее измерить параметры короткого замыкания

2 мин. чтения
Светодиодная лента

Уральские ученые создали материал для ярких долговечных светодиодов

2 мин. чтения

Есть что посмотреть: уникальные медиаэкраны Москвы

2 мин. чтения
На международной выставке KazInterPower

На выставке в Казахстане покажут новое оборудование для энергетики и промышленности

1 мин. чтения
Датчик температуры

Российские ученые разработали прибор для измерения температуры в газовых реакторах

2 мин. чтения
Соединение дисульфид рения

Найдено перспективное соединение для широкого применения в энергетике

1 мин. чтения

Создана геотермальная электростанция для работы в северных регионах

1 мин. чтения